Preview

Efficient land use based on remote sensing data

https://doi.org/10.46666/2021-3.2708-9991.20

Abstract

The goal -is to explore ways of using Earth remote sensing data for efficient land use.

Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected.

Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity.

Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.

About the Author

Y. M. Kenzhegaliyev
S. Seifullin Kazakh Agro Technical University
Kazakhstan

Kenzhegaliyev Yelaman – The main author; Ph.D student ; Cdastre educational program.

010011 Zhenis Ave., 62, Nur-Sultan



References

1. Saharova, E.Ju. & Sladkih, L.A. & Kulik, E.N. (2016). Identifikacija sel'skohozjajstvennyh kul'tur na osnove ispol'zovanija dannyh distancionnogo zondirovanija Zemli [Identification of agricultural crops based on the use of remote sensing data]. Interjekspo Geo-Sibir', 21 p. [in Russian].

2. N.Ozeranskaya & R. Abeldina & G. Kurmanova & Zh. Moldumarova & L. Smunyova (2018). Аgricultural land management in the system of sustainable rural development in the republic of Кazakhstan. International Journal of Civil Engineering and Technology (IJCIET), 9(13), 1500-1513.

3. Poslanie Glavy gosudarstva KasymZhomarta Tokaeva narodu Kazahstana ot 1 sentjabrja 2021 goda «Edinstvo naroda i sistemnye reformy – prochnaja osnova procvetanija strany» [Message from the Head of State K.-Zh. Tokayev to the people of Kazakhstan "The unity of the people and systemic reforms are a solid foundation for the country's prosperity"] (2021). Available at: https://www.akorda.kz/ru/poslanie-glavy-gosudarstva-kasym-zhomarta-tokaeva-narodu-kazahstana-183048 (date of access: 05.09.2021) [in Russian].

4. Shajmerdenova, A.A. & Glushan' L.A. (2019). Monitoring sel'skohozjajstvennyh zemel' [Monitoring of agricultural land]. Problemy agrorynka – Problems of agrimarket, 1, 142-149 [in Russian].

5. Golovanov, A.I. (2014). Deshifrirovanie ajerokosmicheskih snimkov [Deciphering aerospace imagery]. Perspektivy razvitija informacionnyh tehnologij - Prospects for the development of information technologies], 14 [in Russian].

6. Chaban, L.N. (2017). Metody i algoritmy raspoznavanija obrazov v avtomatizirovannom deshifrirovanii dannyh distancionnogo zondirovanija [Methods and algorithms of pattern recognition in automated decryption of remote sensing data]. Uchebnoe posobie, 10 p. [in Russian].

7. Metody ucheta zasorennosti posevov [Methods of accounting for the contamination of crops]. (2018). Available at: http://mseonline.ru/zemledelie/metody-ucheta-zasorennosti-posevov.html (date of access: 05.09.2021) [in Russian].

8. Kurmanova, G.K. & Moldahmetov, A.A. (2018). GAZh tehnologijasyna negіzdelgen zher monitoringі [Land monitoring based on GIS technologies]. Problemy agrorynka –Problems of agrimarket, 2, 202-208 [in Kazakh].

9. Mjagkij, P.A. (2016). Gis-tehnologii v zemleustrojstvo i monitoring zemel' [GIS technologies in land management and land monitoring]. Informacija i obrazovanie: granicy kommunikacij - Information and education: the frontiers of communication, 8 (16), 108-109 [in Russian].

10. Harazmi, R. & Chaban, L.N. & Karkon, V.V. & Panidi, M.A. & Mitrofanov, E.M. (2017). Ocenka tochnosti razlichnyh metodov kontroliruemoj klassifikacii v aridnyh territorij [Evaluation of the accuracy of various methods of controlled classification in arid territories]. Izvestija vysshih uchebnyh zavedenij. Geodezija i ajerofotosemka - Proceedings of higher educational institutions. Geodesy and aerial photography, 5, 106-110 [in Russian].


Review

For citations:


Kenzhegaliyev Y.M. Efficient land use based on remote sensing data. Problems of AgriMarket. 2021;(3):180-185. (In Russ.) https://doi.org/10.46666/2021-3.2708-9991.20

Views: 548


ISSN 1817-728X (Print)
ISSN 2708-9991 (Online)