Preview

Efficiency of implementation of Smart Farms: economic assessment

https://doi.org/10.46666/2023-4.2708-9991.05

Abstract

The goal is to study the mechanism for increasing the efficiency of production systems when fattening beef cattle. An example of the use of Smart Technology is given to determine and influence the quality of genetic selection of meat animals, which in turn contributes to high average daily gain and increased profitability of farms. The object of research - methods of keeping and feeding cattle, digital technologies and technical means, results of fundamental, theoretical, forecasting and search and applied scientific developments.

Methods – comparative analysis, expert assessments, experience in applying promising trends and innovative technology of the Intergado system.

Results – it is shown that the use of such nanotechnologies makes it possible, depending on the “key feature,” to automatically generate databases of production processes through which the weight and condition of the livestock is monitored. Based on information about changes in the weight of cattle, timely adjustments are made to the animals’ diet, which helps improve their health and optimize the genetic algorithm. Weighing cattle (BW) is an important tool in herd management since increasing body weight affects productivity, productivity and, as a result, readiness for speedy sale and savings in feed costs.

Conclusions – digital solutions have been proposed to improve the effectiveness of regulation of agricultural production with a large flow of information and technological operations;  model parameters make it possible to automatically transfer farm animals from one production group to another by tracking the “live weight” indicator for culling.

About the Authors

S. Tokenova
S. Seifullin Kazakh Agro Technical Research University
Kazakhstan

Tokenova Sandugash; Ph.D; Senior Lecturer of the Department of Accounting and  Finance

010011 Zhenis Ave., 62, Astana



A. Orazbayeva
S. Seifullin Kazakh Agro Technical Research University
Kazakhstan

Orazbayeva Ayagoz; Master of Economic Sciences; Senior Lecturer of the Department of Accounting and Finance

010011 Zhenis Ave., 62, Astana



A. Ismailova
S. Seifullin Kazakh Agro Technical Research University
Kazakhstan

Ismailova Aliya; Candidate of Economic Sciences, Associate Professor; Senior Lecture of the Department of Accounting and Finance

010011 Zhenis Ave., 62, Astana



References

1. Esengalieva, S.M., Mansurova, M. A., Mahmudov, A. D., Fedorchenko, L.V. (2021) Sovremennoe sostojanie i tendencii razvitija zhivotnovodstva v Respublike Kazahstan [Current state and development trends of livestock farming in the Republic of Kazakhstan] Jekonomika: strategija i praktika - Economics: the strategy and practice, 16(2), 134-144[in Russian].

2. Statisticheskie dannye Agentstva po strategicheskomu planirovaniju i reformam Respubliki Kazahstan Bjuro nacional'noj statistiki [Statistics from the Agency for Strategic Planning and Reform of the Republic of Kazakhstan Bureau of National Statistics] Avalaible at: URL: https:// stat. gov. kz/ (date of access: 16.03.2023) [in Russian].

3. Centr cifrovoj transformacii v sfere APK. «Umnaja» ferma [Center for digital transformation in the agricultural sector. Smart farm]. Avalaible at:URL: https://www.mcxac.ru/digital-cx/ umnaya-ferma/.

4. Kalimbetov, H.K., Baymuratova, Z.A., Ospanova, F.B. Modern technologies that can be used in the smart farm. Jekonomika i socium- Economy and society, №10(101)-1, 1029-1035

5. Bretschneider, G., Bretschneider, A. Cuatrin, D. Arias, & D. Vottero (2014). Estimation of body weight by an indirect measurement method in developingreplacement holstein heifers raised on pasture. Archivos de MedicinaVeterinaria. 46( 3), 439–443

6. Kadel, M. J., Johnston, D. J., Burrow, H. M., Graser, H. U., & Ferguson, D. M.(2006). Genetics of flight time and other measures of temperament and their value as selection criteria for improving meat quality traits in tropically adapted breeds of beef cattle. Australian Journal of Agricultural Research, 57(9), 1029-1035.

7. Gabidulin, V.M., Belousov, A.M., Tagirov, H.H., Belousov, A.M., Tagirov, H.H. (2016). Opredelenie plemennoj cennosti bykov-proizvoditelej v zavisimosti ot metoda ocenki [Determination of breeding value of breeding bulls depending on the evaluation method]. Vestnik mjasnogo skotovodstva - Herald of cattle breeding, № 2 (94), 22-26.

8. Cafe, L. M., Robinson, D. L., Ferguson, D. M., McIntyre, B. L., Geesink, G. H., Greenwood, P. L. (2011). Cattle temperament: Persistence of assessments and associationswith productivity, efficiency, carcass and meat quality traits. J. Anim. Sci., 89,1452–1465. doi:10.2527/jas.2010-3304

9. Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision Agriculture for Crop and Livestock Farming. Brief Review. Animals, 11(8), 2345. DOI: https://doi.org/10.3390/ani11082345

10. Ilyas, Q.M., Ahmad, M. (2020). Smart Farming: An Enhanced Pursuit of Sustainable Remote Livestock Tracking and Geofencing Using IoT and GPRS. Computer Science, Information System DOI: 10.1155/2020/6660733.

11. Guntoro, B., Hoang, Q.N., A’yun, A.Q., & Rochijan. (2019). Dynamic Responses of Livestock Farmers to Smart Farming. Earth and Environmental Science DOI:10.1088/1755-1315/372/1/012042.

12. Aққair B.Zh. Vnedrenie sistemy Intergado dlja ocenki bychkov //Sejfullinskie chtenija - 18(2): «Nauka ХХI veka - jepoha transformacii» [Implementation of the Internado system for the evaluation of bulls // Seifullin readings - 18(2): "Science of the XXI century - the era of transformation"] Materialy Mezhdunar. nauch. – prakt. konf. - Materials of the International scientific-practical conferences. Astana, Kazakhstan, 2022.- Astana, 2022, T.I, Ch.II.- pp. 121-123 [in Russian].

13. Uskenov, R. B., Akkair, B. Zh., Issabekova, S. A., Bostanova, S. K., Nasir, Zh. K. (2022). Live animal assessment of meat qualities of kazakh white-headed bulls. Bulletin of Science of the Kazakh Agrotechnical University named after S.Seifullin(interdisciplinary), 114( 1), 4-11.

14. Saravanan, K., Saraniya, S. (2017) Cloud IOT based novel livestock monitoring and identification system using UID. Sensor Review, 38(1), 21-33. DOI: https://doi.org/10.1108/SR-08-2017-0152

15. Orazbaeva, A.S. Tokenova, S.M., Mogil'nyj, S.V.(2023). Perspektivy i uslovija vnedrenija tehnologij «umnogo» zhivotnovodstva v Kazahstane: Vzgljad fermerov [Prospects and conditions for the introduction of "smart" animal husbandry technologies in Kazakhstan: Farmers' view]. Vestnik nauki Kazahskogo agrotehnicheskogo universiteta imeni Sakena Sejfullina (mezhdisciplinarnyj)- Bulletin of Science of the Kazakh Agrotechnical University named after Saken Seifullin (interdisciplinary), №2(117), 291-302 [in Russian].


Review

For citations:


Tokenova S., Orazbayeva A., Ismailova A. Efficiency of implementation of Smart Farms: economic assessment. Problems of AgriMarket. 2023;(4):57-65. https://doi.org/10.46666/2023-4.2708-9991.05

Views: 300


ISSN 1817-728X (Print)
ISSN 2708-9991 (Online)